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Hadron spectroscopy (1)

Masses of (colourless) QCD bound-states can be computed by
measuring two-point functions. The Euclidean two-point function is

C (t) = 〈0|Φ(t)Φ†(0)|0〉

The time-dependence of the operator, Φ is given by
Φ(t) = eHtΦe−Ht , so

C (t) = 〈Φ|e−Ht |Φ†〉

inserting a complete set of energy eigenstates gives

C (t) =
∞∑

k=0

〈Φ|e−Ht |k〉〈k |Φ†〉 =
∞∑

k=0

|〈Φ|k〉|2e−Ek t

Then limt→∞ C (t) = Ze−E0t

If the large-time exponential fall-off of the correlation function can be
observed, the energy of the state can be measured.
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Hadron spectroscopy (2)

The energies of excited states can be computed reliably too.

Tracking sub-leading exponential fall-off works sometimes but a more
efficient method is to use a matrix of correlators. With a set of N
operators {Φ1,Φ2, . . . } (with the same quantum numbers), compute
all elements of

Cij(t) = 〈0|Φi (t)Φ†j (0)|0〉

Now solve the generalised eigenvalue problem

C (t1)v = λC (t0)v

for different t0 and t1.

The method constructs an optimal linear combination to form a
ground-state, and then constructs a set of operators that are
orthogonal to it.

The second eigenvector can not have overlap with the ground-state at
large t, and will fall to the first excited energy.
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Hadron spectroscopy (3)

Lattice practitioners like to show this in an “effective mass plot”.
The effective mass is

meff(t) = −1

a
log

C (t + a)

C (t)

and for times large enough such that C is dominated by the
ground-state, the effective mass should become independent of time;
a “plateau”.

0 5 10
t/a

0.6

0.8

1

1.2

1.4

1.6

am
ef

f

ground state

1
st
 excited state

2
nd

excited state

Radial (?) excitations of a
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Spin on the lattice

Eigenstates of the hamiltonian simultaneously form irreducible
representations of SO(3), the rotation group. Spin is a good quantum
number.

The lattice hamiltonian does not have SO(3) symmetry. It is
symmetric under the discrete sub-group of rotations of the cube,
Oh. This group has 48 elements (once parity is included) and ten
irreducible representations.

The eigenstates of the lattice hamiltonian therefore have a good
“quantum letter”; Au,g

1 ,Au,g
2 ,Eu,g ,T u,g

1 ,T u,g
2

Can we deduce the continuum spin of a state? With some caveats,
yes.

A pattern of degeneracies must be found and matched against the
representations of Oh subduced from SO(3).
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Spin on the lattice (2)

J A1 A2 E T1 T2

0 1 − − − −
1 − − − 1 −
2 − − 1 − 1
3 − 1 − 1 1
4 1 − 1 1 1
5 − − 1 2 1
6 1 1 1 1 2

...

Example
The Yang-Mills glueball spectrum
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Creation operators: glueballs

To measure the correlation functions, we need to measure appropriate
creation operators on our ensemble.

The operators should be functions of the fields on a time-slice and
transform irreducibly according to an irrep of Oh (as well as isospin,
charge conjugation etc.)

First example: the glueball. An appropriate operator would be a
gauge invariant function of the gluons alone: a closed loop trace.

Link smearing greatly improved ground-state overlap.

Apply smoothing filters to the links to extract just slowly varying
modes that then have better overlap with the lowest states.
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Creation operators: glueballs

What do operators that transform irreducibly under Oh look like?

Φ1 Φ2 Φ3

Can make three operators by taking linear combinations of these
loops.
They form two irreducible representations (Ag

1 and Eg ).

ΦAg
1

= Φ1 + Φ2 + Φ3

Φ
(1)
Eg = Φ1 − Φ2

Φ
(2)
Eg = 1√

3
(Φ1 + Φ2 − 2Φ3)
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Creation operators: glueballs

After running simulations at more than one lattice spacing, a
continuum extrapolation (a→ 0) can be attempted.
The expansion of the action can suggest the appropriate choice of
extrapolating function.
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Isovector meson correlation functions

To create a meson, we need to build functions that couple to quarks.
In the simplest model, a meson would be created by a quark bilinear,
so the appropriate gauge invariant creation operator (for isospin
I = 1) would be

Φmeson(t) =
∑
x

ū(x , t)ΓUC(x , y ; t)d(y , t)

where Γ is some appropriate Dirac structure, and UC a product of
(smeared) link variables.
As before, appropriate operators that transform irreducibly under the
lattice rotation group Oh are needed.
The complication here is that we do not have direct access to the
fermion integration variables in the computer.
As with updating algorithms, the observation that the quark action is
bilinear saves us:

〈ψαa (x , t)ψ̄βb (y , t ′)〉 = [M−1]α,βab (x , t; y , t ′)
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Isovector meson correlation functions (2)

Now the elementary component in the correlation function is

〈0|Φ(t)Φ†(0)|0〉 =

〈Tr M−1(z , 0; x , t)ΓUC(x , y , t)M−1(y , t; w , 0)Γ†UC′(w , z , 0)〉

In general, this is still expensive to compute, since it requires knowing
many entries in the inverse of the fermion operator, M.

If the choice of operator at the source is restricted and no momentum
projection is made, only the bilinear at (eg) the origin on time-slice 0
is needed.

Quark propagation from a single site to any other site is computed by
solving Mψ = ea,α

0 where e0 are the 12 vectors that only has non-zero
components at the origin.

Getting away from this restriction by estimating “all-to-all”
propagators is an active research topic.
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Isovector meson correlation functions (3)

The most general operator.

A restricted correlation func-
tion accessible to one point-to-
all computation.
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Isoscalar meson correlation functions (1)

If we are interested in measuring isoscalar meson masses, extra
diagrams must be evaluated, since four-quark diagrams become
relevant. The Wick contraction yields extra terms, since

〈ψi ψ̄jψk ψ̄l〉 = M−1
ij M−1

kl −M−1
il M−1

jk

Now
〈0|ΦI=0(t)Φ†I=0(0)|0〉 =

〈0|ΦI=1(t)Φ†I=1(0)|0〉 − 〈0|Tr M−1ΓUC(t)Tr M−1ΓUC(0)|0〉
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Isoscalar meson correlation functions (1)
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Summary

Euclidean metric is useful for spectroscopy: isolate ground-state by
looking at large-time separation of correlation function

Analysis of matrices of correlation functions gives a robust way of
extracting excited states

Discretising space-time breaks the rotation symmetry. Lattice energy
eigenstates are irreducible representations of the discrete cubic point
group (or the little group at finite momentum).

Appropriate gauge invariant creation operators for many different
states can be defined and their correlation functions measured by
Monte Carlo.

For high precision, a continuum extrapolation of data is required.

Isovector mesons can be probed using point-to-all quark propagation

Isoscalar mesons need all-to-all methods.
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